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We have used small-angle X-ray scattering (SAXS) and oscillatory shear rheometry to study the salt-induced
flocculation of a concentrated colloidal silica dispersion in water. The SAXS results provided qualitative
confirmation of a primary contact coordination shell and barrier as predicted by the DLVO model. The results
are consistent with an irreversible, but volume-conserving, growth of a network of interparticle contacts. The
activation energy for network growth turns out to be substantially greater than the barrier in the pair potential
predicted by the DLVO model, and this difference is ascribed to the importance of multiparticle interactions.
The storage modulus of the gel (reflecting the long-range structure) continued to evolve long after changes
in the local structure could no longer be distinguished, but ultimately it also converged to a quasi-stationary
state. Disruption of the gel network by shear had no detectable effect on the local structure, but caused a
dramatic reduction in the moduli which subsequently recovered following different kinetics than in the initial
growth process.

1. Introduction

Concentrated suspensions of charge-stabilized colloids may
be flocculated by changes in pH or ionic strength into a gel
with thixotropic rheology useful for paints, ceramic slips,
cosmetics, and foods. While studies of flocculation under highly
dilute conditions have revealed some remarkable universal
features,1 those results provide little insight into the complex
behavior which arises at high concentrations, especially beyond
the gel points.

At high concentrations aggregation and rheological response
are both nonuniform functions of time spanning several
decades,2 the rheology is further complicated by nonlinearity
at relatively small strains, and all of these properties are
nonlinear functions of particle concentrations.3-5 Flocculated
gel networks can be partially disrupted by shear6-8 and may or
may not recover their original properties under quiescent
conditions. Some gels undergo syneresis, in which aggregation
forces ultimately cause them to shrink and further concentrate
by exuding excess solvent. However, syneresis is not universal.
Equally common are examples of stationary states where the
aggregation process slows and apparently ceases without
shrinkage, regardless of the initial concentration.

The structure of colloid clusters grown under dilute conditions
apparently depends only on whether the coupling reaction is
diffusion-limited or activated.1 However, details of the inter-
particle forces undoubtedly play a more prominent role in
concentrated colloidal gels than they do for concentrated colloids
in general. Understanding the structure may be central to

explaining many of the above phenomena. Evidence from light
and X-ray scattering indicates that the structures of both dilute
and dense colloids may be fractal in nature6-9 and that the fractal
dimension may depend on the shear history of the sample.6-8

There is little information available, however, on the local
structure of the gel or the physical origin of the stationary state.

Earlier studies of flocculated colloidal gels have focused
primarily on systems under apparently stationary conditions to
determine the effects of compositional parameters such as
particle size, volume fraction, pH, and the concentration of
electrolytes or steric stabilizers on yield stress and linear
viscoelastic properties.3-5,10-12 In order to interpret the structure
and rheological properties during gelation, it is essential to first
distinguish whether those properties represent true stationary
states or simply different transient stages in a slowly evolving
process. For any given example, it will likewise by important
to identify the physical constraints which limit the rate and/or
ultimate extent of aggregation. Resolving these issues requires
independent kinetic and structural characterization, and the
conclusions will necessarily be limited by the sensitivity of the
measurements.

We report here a detail study of salt-induced flocculation of
colloidal silica dispersions in water. At various stages during
initial growth or recovery of the flocculated gel network, small-
angle X-ray scattering (SAXS) measurements were used to
characterize the local structure and derive the pair distribution
function, and linear viscoelastic properties were determined by
small-strain oscillatory shear rheometry. The changes in local
structure during flocculation were found to be consistent with
an activated transition of neighboring pairs from a shallow* To whom correspondence should be addressed.
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secondary minimum into primary contact. While such minima
are a feature of the DLVO pair potential,13 the potential of mean
force which actually governs our experimental kinetics may
differ considerably due to effects of multiparticle correlations.
It is therefore not surprising that the activation energy for
network growth is found to be substantially larger than the
barrier predicted by DLVO for coupling of an isolated pair.

The results include several noteworthy features not previously
reported. At high salt concentrations, both measurements
revealed a progressive autoretardation of the flocculation process
and convergence toward a quasi-stationary state. (In the context
of rheological measurements, we consider a quasi-stationary
state to be one in which the elastic modulus changes less than
1% per hour.) Evolution in the local structure was dominated
by a decrease in diameter of the first coordination shell but,
surprisingly, the total population at distances encompassing both
contact and secondary neighbors did not change greatly. The
storage modulus of the gel continued to grow long after changes
in the local structure could not longer be distinguished, but
utimately it also converged to a constant value. Disruption of
the gel network by shear had no detectable effect on the local
structure but caused a dramatic reduction in the moduli which
subsequently recovered following a different kinetics than the
initial growth process. Possible mechanisms are considered to
account for self-limiting network growth consistent with other
properties of the system, notably the absence of syneresis.

Experimental details and general characterization are sum-
marized in section 2. The approach taken to the SAXS data
analysis is discussed in section 3. Predictions of the DLVO
model, and comparison of DLVO predictions to the model used
for the SAXS data, are reviewed in section 4. Section 5 describes
the SAXS data and analysis of the pair distribution function.
Rheological measurements are described in section 6. The
relationships and implications of these results are discussed in
section 7. The relationships and implications of these results
are discussed in section 7. The formalism used in the SAXS
data analysis is presented more fully in the Appendix.

2. Experimental Section

All samples were prepared from a single stock of colloidal
silica dispersion in deionized water (DIW) prepared according
to a proprietary procedure and kindly supplied by Dr. Peter
Jernakoff, Dupon Specialty Chemicals. The silica content was
31.7% and density was 1.2091 g/cm3, from which we compute
a density of 2.20 g/cm3 and volume fractionΦV ) 0.174 for
the particles. The level of inorganic impurities in this dispersion
is much lower than commercial colloidal silicas such as Ludox.
Analysis by inductively coupled plasma showed 2 ppm Ca, 0.48
ppm Na, 0.39 ppm Mg, and no other metal ions at greater than
0.1 ppm. The carbon content was 0.15%, much less than
colloidal silica prepared via the Sto¨ber process14 from tetraethyl
orthosilicate. The conductivity of<0.2 mmho/cm indicated that
background electrolyte concentration was no more than 0.001
M.

Stable dispersions of higher concentration were prepared by
dialysis of the stock dispersion against solutions of poly(ethylene
glycol), molecular weight 10 000 (Aldrich Chemical Co.) in
DIW. For example, dialysis against a 4% solution of poly-
(ethylene glycol), with osmotic pressure 45.3 kPa,15 provided a
highly viscous, but stable dispersion containing 52.8 wt % silica.
Stock solutions of 0.10 M KCl and 1.0 M MgCl2 in DIW were
prepared from analytical reagents and diluted as needed. In
studies of the flocculation process, the required quantity of salt-
free silica dispersion (from 1 to 5 mL) was added rapidly to a

vial containing a predetermined aliquot of 1.0 M MgCl2 and
mixed vigorously by means of a vibratory mixer or a magnetic
stirrer. The sample was then transferred to the rheometer or
X-ray sample holder, generally within 1 min.

Preliminary characterization of particle size was obtained from
light scattering measurements (Ar ion laser, Brookhaven Instru-
ments BI-200SM goniometer). The radius of gyration,Rg )
330 ( 40 Å, was determined from Guinier analysis of angle-
dependent scattering data on a dispersion sample diluted to
0.05% in DIW. Photon correlation spectra (PCS) were deter-
mined at an angle of 90° (Brookhaven instruments BI-2030
Digital Autocorrelator). Autocorrelation functions for dispersions
with 0.05 wt % silica in 0.001 M KCl indicated nearly
monodisperse particles withRh ) 430 ( 20 Å. PCS measure-
ments at electrolyte concentrationse0.0001 M showed sys-
tematically longer correlation times indicative of long-range
repulsive interactions between the particles. The ratio (Rg/Rh)2

) 0.59 agrees within experimental error with the theoretical
value 0.60 for spheres of uniform refractive index.

The pH of the stock dispersion was 9. Potentiometric titration
indicated of pKa of 8.5 and equivalent weight of 9200. Assuming
that this represents SiOH groups on the surface of spheres of
radiusRh and density 2.2 g/cm3, it corresponds to 21 ionizable
SiOH/nm2, which is 2-3 times larger than for typical amorphous
silica.16 This discrepancy indicates that at high pH either charges
on the colloid are not restricted to a single atomic layer, or
perhaps that Si-O-Si bonds on the surface may undergo partial
hydrolysis. Electrokinetic measurements were made using a Zeta
potential analyzer, (Zeta-Plus, Brookhaven Instrument Corp.,
Holtsville, NY). The Zeta potential was-28 mV in unbuffered
0.001 M KCl and increased to-50.7 mV at pH 10.

The stock dispersion (ΦV ) 0.174) exhibits typical charac-
teristics of a charge-stabilized colloid with long-range repulsive
interactions. SAXS patterns were dominated by strong Bragg
diffraction peaks which could be indexed to an fcc lattice with
ΦV ) 0.211. This result closely resembles results of Yoshida
et al.,17 who studied the coexistence of crystalline and amor-
phous domains in high-purity colloidal silica dispersions and
reported a similar difference between the net silica volume
fraction and that in crystals. The stock dispersion is a non-
Newtonian fluid. It exhibited a power-law viscosity,η ) 20 Pa
s (γ̆)-1, corresponding to a Bingham fluid18 with yield stress of
20 Pa. Both the crystalline diffraction and yield stress were
completely suppressed by dilute electrolyte. For example, KCl
dispersions at the sameΦV in 0.002 M KCl exhibited a constant
(Newtonian) viscosity of only 0.004 Pa s at strain rates from
0.1 to 100 s-1, and the corresponding SAXS patterns showed
only broad peaks characteristic of liquidlike order.

Another measure of interparticle forces was obtained from
the variation in osmotic pressure with colloid concentration.
Samples of stock dispersion (ca. 2.5 g) were placed in dialysis
cassettes (Slide-A-Lyzer, 3500 MWCO, Pierce Chemical Co.,
Rockford, IL) and allowed to equilibrate at ambient temperature
with solutions containing from 1 to 10% by weight of poly-
(ethylene glycol) (Mw 10 000), whose osmotic pressures had
been previously determined.15 The colloid concentration was
calculated from the net mass following an equilibration period
of at least 20 h. The data shown in Figure 1 reveal strong
interparticle repulsions in the salt-free ordered phase at volume
fractions well below the close-packed limit. The osmotic
compressibility was found to be reversible (i.e., independent of
the concentration history) up to osmotic pressure of about 100
kPa, beyond which the sample failed to swell to its original
volume when reequilibrated at lower osmotic pressures.
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A sample of the stock dispersion was allowed to dry, and
the resulting solid fragments were examined by scanning elec-
tron microscopy. Another manifestation of a narrow distribution
of particle sizes is that the majority of particles are organized
in dense-packed crystalline domains, as seen in Figure 2.

SAXS measurements were performed at the DND-CAT
Synchrotron Research Center, Advanced Photon Source, Ar-
gonne National Laboratory. The samples were contained in
1-mm-thick cells with Kapton windows. The cells were mounted
on an Instron frame, which providedX-Y translation for sample
alignment. The energy to the X-ray beam from an insertion
device (ID) was tunable from 7 to 18 keV. The ID, double
crystal monochromator, first, second, and third set of adjustable
slits, and the sample were located at 0, 30, 35, 54, 66, and 68
m, respectively, along the X-ray beam path from the synchrotron
orbit. The size of the square beam was defined at the first and
second sets of slits, which were both set to 100µm. A parasitic
scattering slit, having the shape of a round pinhole only large
enough to circumscribe the square beam, was placed 1-2 mm
before the sample. A circular lead beamstop 2 mm in diameter
was placed immediately before the detector. The two-dimen-
sional CCD (Mar) detector had 2048× 2048 pixels with a 16-
bit intensity scale and a circular active area of 133 mm diameter.
In all cases the detector was used in a 4× 4 binning mode at
a resolution of 512× 512, with effective pixel size 258µm/
pixel. We note that, in addition to the normal counting statistics,
the CCD detector introduces additional readout noise, on the

order of 1 photon per pixel. It was important to explicitly take
this into account when analyzing the data, since it introduced a
source of noise that was independent of the detector integration
time. The detector was placed at the end of an evacuated 8 in.
pipe fitted with Kapton windows on both ends. The sample to
detector distance was adjustable from a few centimeters to 8.5
m. For the measurements reported here, the detector was placed
at a distance of 8.496 m away from the sample and the ID was
tuned to an energy of 8.048 KeV, corresponding to a wavelength
λ ) 1.541 Å. At this distance the detector covered scattering
angles 2θ corresponding to the range in the scattering vector
magnitude 8× 10-4 < q ()(4π/λ) sin θ) < 3 × 10-2 Å-1.

With this configuration it was possible to collect an entire
spectrum in less than 1 min (essential for observing the time
evolution early in the process of flocculation), and with
sufficiently high resolution that it was not necessary to desmear
the data.

After data collection, a circular numerical average was
performed on each data set to provide a set of intensities versus
momentum transfer magnitude|qb|. The numerical values of these
intensities were proportional to the number of photons scattered
at that angle. The magnitude of the Poisson error was established
by comparing short segments of 10 data points to a best-fit cubic
spline curve. Each entire data set, including estimated Poisson
errors, was then least-squares fit to an empirical model for the
intensity as discussed in section 3.

Rheological experiments were performed using a Rheometrics
RFSII fluids spectrometer equipped with parallel plate or couette
fixtures and a force rebalance torque transducer. Oscillatory
shear measurements were used to determineG′, the storage
modulus, andG′′, the loss modulus, as a function of frequency,
and as a function of time at fixed frequency. Experiments were
conducted by applying a sinusoidal strain and measuring the
phase angle of the induced sinusoidal stress response. This stress
response was then decomposed into signals that are in-phase
and out-of-phase with the strain input;G′ is proportional to the
in-phase (elastic) portion andG′′ is proportional to the out-of-
phase (viscous) portion.19 All experiments were performed in
the linear viscoelastic region, where the moduli are independent
of the applied strain amplitude. Linear viscoelasticity was
ensured by evaluating the strain dependence of the moduli at
individual frequencies and then operating at small strains where
the moduli were strain independent. Temperature was controlled
using a circulating water bath. Evaporation of water from the
sample was prevented using a small-volume, close-fitting
clamshell cover lined with absorbent material, which was
saturated with water.

3. Analysis of SAXS Results

A detailed discussion of the SAXS data analysis is provided
in the Appendix. Here we summarize the important features of
our model. In general, the scattered X-ray intensity is given by

whererbi is the position of theith particle andf(rb) describes the
charge distribution around a reference siterb. We used a form
F(qb) appropriate to weakly polydisperse spheres with radiusRb

and dispersionσb
20

Figure 1. Equilibrium osmotic pressure of silica dispersions in
deionized water.

Figure 2. Scanning electron micrograph of dried stock dispersion
sample, with no salt. The image shows an area of three by four microns.

I(qb) ) I0S(qb)|F(qb)|2 (1)

S(qb) ) |∑
i

eiqb‚ rbi|2 ) ∑
i

∑
j

eiqb‚( rbi- rbj) (2)

F(qb) ) ∫d3r eiqb‚ rbf( rb) (3)
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The structure factorS(q) is given by the Fourier transform of
the two-particle density correlation functiong(r) ≡ 1 + h(r):

where〈n〉 is the average particle density.
In analyzing SAXS data, several common approaches are

commonly taken to factoring out|F(qb)|2 from S(qb) in eq 1:
1. In some cases, one is primarily interested in determing

the structure of individual particles.21-25 In the limit of infinite
dilution, S(q) f 1, and interparticle correlations can be ignored.
More realistically, one can measure a series of samples of
increasing dilution and try to establish the limit ofS(q) f 1.
As we shall see, however, even at 1% dilution the interparticle
correlations can have a noticeable effect on the scattered
intensity. One can also concentrate on higher-q data, on the
principle that long-distance correlations will be manifested
primarily at low q, or one can attempt to factor out theS(q)
contribution by calculating the structure expected for hard
spheres or other simple models.22

2. In some cases, the colloid has crystallized, and sharp peaks
appear inS(q). In this case, it may be sufficient to establish the
crystal space group and lattice spacing by measuring the
positions of the peaks, without attempting a quantitative analysis
of the intensity.25-28

3. To quantitatively determineS(q), the simplest approach is
to make measurements at high dilution and then divide the
higher concentration scattering patterns by the dilute pattern.29,30

The risk here is that structure factor effects may be important
even at high dilution. Additionally, considerable noise is
introduced when dividing the data point-by-point near the
minima in F(q).

4. For relatively small particles, the minima in|F(q)|2 are
pushed out to relatively largeq. In this case, one can attempt
to establish the form of|F(q)|2 (usually using an empirical line
shape) at largeq, then divideI(q) by |F(q)|2 to obtain S(q)
directly.26,31,32This procedure will be most accurate at very small
values ofq where|F(q)|2 does not vary rapidly.

5. In some cases, however, one finds that the interesting length
scale of interparticle correlations is comparable to the size of
the particles. In this case, one cannot obtain a clean separation
of S(q) and |F(q)|2. Additionally, dividing I(q) by |F(q)|2 to
obtainS(q) can suffer from the difficulty that the first maximum
in S(q) is “accidentally” at a minimum in|F(q)|2. In this case,
an alternate approach is to compare the entire diffraction pattern
to a structural model incorporating free variables in both the
particle size andg(r), either by using a Monte Carlo approach33

or via least-squares fits of the measured intensity to theentire
I(q) function, including free variables in both|F(q)|2 andS(q).34

The latter is the approach we took in our analysis.
For |F(q)|2 we used the smeared Rayleigh function presented

in eqs 4 and 5. For the structure factor, we chose an empirical
function for g(r) which contained the appropriate physical
constraints, then calculatedS(q) using a combination of analyti-
cal and numerical Fourier transforms.g(r) was parametrized
such that there was a depletion “well” for 0e r e Rw, where

Rw is the radius of the depletion well, with depth determined
by the volume fractionΦV and edge sharpnessσw, and two
Gaussian peaks representing coordination shells with radiiR1,
R2, widthsσ1, σ2, and coordination numbersc1, c2. The resulting
g(r) qualitatively resembles those calculated fron analytical
theories for equilibrium structures, such as DLVO theory13 or
the hypernetted chain equation.35 It should be emphasized,
however, that, despite the physical rationalization of introducing
parameters such asRw, in the final analysis the form ofg(r)
was purely empirical, and the fitted parameters are less
meaningful than the positions of maxima, minima, etc., in the
optimizedg(r).

The formula used is given by

as derived in the Appendix. Hereq is the momentum transfer,
B andC are arbitrary background prefactors,b(q) is an empirical
polynomial describing the background scattering,A is an
arbitrary intensity prefactor,Rb is the ball radius,σb describes
the polydispersity of ball radii,Rw is the radius of the depletion
well sphere,σw is the width of the “wall” of the depletion sphere,
ΦV is the volume fraction of colloidal spheres,R1, c1, andσ1

are the radius, coordination number, and width of the first
coordination shell,R2, c2, andσ2 are the radius, coordination
number, and the width of the second coordination shell, andxi

and wi are the positions and widths used in the Hermite
integration algorithm. In the final round of fits, as many
parameters as possible were constrained to be equal to their
average values. For example, we required that the ball radius
be the same for all measured concentrations.

4. Review of DLVO Predictions and Comparison with the
Empirical SAXS Model

To test our fitting algorithm, we created “simulated” data
using the DLVO pair potential. The DLVO potentialu(r) is
considered to be the sum of screened electrostatic and dispersion
contributionsue andud. Following Russel et al.,36 we employ
the linear superposition approximation for the former and the
Hamaker approximation for the latter:

whereεε0 ) 7.08× 10-10 C2/N m2 is the permittivity of water,
R ) 440 Å is the particle radius,s is the distance between

I(q) ) x(Bb(q))2 + C2 +

A
1

xπ
∑
i)1

n

wi|4π(Rb + x2σbxi)
3

3
F0R(q,Rb +

x2σbxi)|2(1 -
ΦV

xπ
wiR(q,Rw + x2σwxi) +

c1

xπ(R1
2 + σ1

2)
∑
i)1

n

(R1 + xiσ1)
sinq(R1 + xiσ1)

q
wi +

c2

xπ(R2
2 + σ2

2)
∑
i)1

n

(R2 + xiσ2)
sinq(R2 + xiσ2)

q
wi) (7)

ue )
4πεε0R

2

s + 2R
ψs

2e-κs (8)

ud ) -
AeffR

s
(9)

|F(q)|2 ) 1

σbx2π
∫dr e-(r-Rb)2/2σb

2|4πr3F0

3
R(q,r)|2 (4)

R(q,r) ≡ 3
sin(qr) - (qr) cos(qr)

(qr)3
(5)

S(qb) ) 〈n〉 (1 + 〈n〉∫d3r eiqb‚ rbh( rb)) (6)
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particle surfaces (in Å),ψs is the surface potential, andκ(Å-1)
) 2.32 × 107 cm-1 (∑ zi

2/Mi)1/2 is the inverse Debye length.
Aeff ) 0.83× 10-20 J is the effective Hamaker coefficient for
silica in water. Recasting this as a function of the distance
between particle centers,r ) 2R + s, at T ) 298 K we obtain

Figure 3 shows examples of DLVO pair potentials calculated
for various salt concentrations employed in our experiments.
In the limit of dilute particles, the equilibrium pair distribution
g(r) may be approximated by exp(-u(r)/kT). This approximation
provides a convenient means to test the reliability of our SAXS
analysis, and is valid for comparison with experimental data at
high dilution, but is clearly inappropriate for data at the higher
concentrations of interest in this study.

Figure 4a shows examples of diluteg(r) for 0.002 M KCl
and 0.05 M MgCl2 simulated according to the dilute DLVO
approximation. (They extend tormax ) 2500 Å whereg(r) ≈
1.0.) A small adjustment was made toh(r) in order to eliminate
truncation artifacts in the Fourier transforms, giving

Scattering functions were then calculating assuming particles
with mean radius 440 Å and a dispersion 13 Å:

The simulatedI(q) (Figure 4b, symbols) were calculated over
the interval 0.002 Å-1 < q < 0.035 Å-1 and compared with
least-squares fits generated following the algorithm described
in section 3 (Figure 4b, solid lines). The best-fit values ofg(r)
derived from this analysis are shown in Figure 4c. In reciprocal
space, the simulated data and empirical model are indistinguish-
able (Figure 4b). The fitted ball radius and dispersion were
almost identical with the inputs to the simulation. The back-
ground parameters were of the same order of magnitude, but
were slightly different. The biggest discrepancy was in the
values ofΦV, which differed by up to a factor of 3 (e.g., 0.05
in the simulation vs 0.014 in the fit). This indicates that the
model compensates for other discrepancies inS(q) by adjusting
the volume fraction.

This exercise confirms that the algorithm is capable of fitting
realistic scattering data to well within experimental error, and
also illustrates an intrinsic limitation in the data. We note that
the g(r) derived from the fits (Figure 4c) recover the broad
features of the original input (Figure 4a), but they fail to resolve

Figure 3. DLVO pair potentials calculated (eq 10) forψs ) 26 mV,
Rb ) 440 Å, and the indicated salt concentrations.

u
kT

) 0.141 Å-1(R2

r )(eψs

kT)2

e-κ(r-2R) - 0.213R
r - 2R

(10)

h′(r) ) e-u(r)/kT - e-u(rmax)/kT (11)

S(q) ) ∑
i

h′(r)
ri sin(qri)

q
∆r (12)

I(q) ) A|F(q)|2(1 + 4πDS(q)) + Bb(q) + C (13)
Figure 4. (a) Simulatedg(r) models corresponding to DLVO theory
for a 5% SiO2 sample in the presence of 0.05 M MgCl2 or 0.002 M
KCl. (b) Simulated SAXS data (circles) and model (curve) for 5% SiO2

sample in the presence of 0.05 M MgCl2 or 0.002 M KCl. For clarity,
only every tenth data point is shown, and curves are offset along the
intensity axis by a factor of 10. The simulated data were constructed
by calculatedg(r) from the DLVO potential, adding an empirical
background and calculating the Fourier transform (eq 13). These
simulated data were then fit with the same model used for the “real”
data. (c) The real spaceg(r) models corresponding to the fitted
parameters from the simulated data shown in (b).
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the sharp peak atr ) 2Rb in the latter corresponding to particles
trapped in the primary minimum of the DLVO potential. This
loss of resolution is primarily a consequence of the limited range
of q retained in the transform, a limit which was chosen to
conform to our experimental data. Thus, the minimum peak
width in Figure 4c is comparable to the minimum wavelength
of the transform, ca. 180 Å. It is apparent that in order to
distinguish any fine structure ing(r), scattering data would need
to extend toq ∼ 0.35 Å-1. We also note that systematic errors
in ΦV obtained from least-squares fits to real data may be
substantial.

5. SAXS Results

Figure 5 shows the SAXS pattern and correspondingg(r) for
a 1% SiO2 sample in the presence of 0.002 M KCl. The model
used to fit the data for this highly dilute sample incorporated a
depletion well but no coordination shell. The fitted parameters
wereRb ) 434 ( 1 Å, σb ) 12.4( 5.0 Å, ΦV ) 7.8 × 10-3

( 4 × 10-4, Rw ) 1177( 80 Å, andσw ) 30 ( 500 Å (i.e.,
anyσw e 530 Å gave a good fit). The ball radius is consistent
with that obtained from quasi-elastic light scattering (QELS).
The small value ofσb indicates that this sample was highly
monodisperse. The depletion zone radiusRw is slightly greater

than 2Rb, as expected. The volume fraction of silica spheres,
ΦV, was within error bars of that calculated from the known
density and mass fraction. Theø2 goodness-of-fit parameter for
a model that did not incorporate the depletion well was
significantly larger than that for a model that did incorporate
the well (ø2 ) 11.0 vs 7.5), although the fits are virtually
indistinguishable by eye.

Figure 6 shows SAXS data from a sample with 31.7 wt %
SiO2 in the presence of 0.020 M MgCl2. This sample had been
vigorously resheared immediately before the measurement was
made.37 Two models were used to fit the data: the full
expression in eq 7 with a depletion region and one Gaussian
peak, and the smeared spherical particle form factor alone. It
can be seen that the full expression provides a good representa-
tion of the data, and in fact is almost indistinguishable from
the data, while the form factor model alone deviates significantly
from the data at lowq.

For the fit shown in Figure 6, the ball radius and dispersion
were held fixed atRb ) 434 Å andσb ) 10 Å (the average
values from many samples) and the volume density was held
fixed atΦV ) 0.28 (if allowed to vary the error bar was(0.02).
The exclusion volume radius and width converged toRw ) 1080
( 100 Å andσw ) 120 ( 100 Å. The coordination number,

Figure 5. (a) SAXS data (circles) and model (curve) for a 1% SiO2

sample in the presence of 0.002 M KCl. Only every tenth data point is
shown. The model function had a particle-shape factor|F(q)|2 times
an empirical structure factorS(q), as described in the text. The fits
employing models with and without the depletion well are indistin-
guishable by eye, but statistically distinguishable. (b) The real space
g(r) corresponding to the model incorporating a depletion zone, used
in analyzing the 1% data shown in (a).

Figure 6. (a) SAXS data (circles) and model for a 31.7 wt % SiO2

sample in the presence of 0.020 M MgCl2. Only every tenth data point
is shown. This sample was resheared immediately before making the
measurement. Solid curve shows a model with the fullS(q) (including
a contact Gaussian peak and depletion well); dashed curve shows the
single-particle form factor plus background only. (b) The real space
g(r) corresponding to the model incorporating both the depletion zone
and the nearest-neighbor contact peak, used in analyzing the data shown
in (a).
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radius, and width of the Gaussian peak converged toc1 ) 3.7
( 1.0,R1 ) 894( 25 Å, andσ1 ) 75 ( 30 Å. Note thatR1 is
almost exactly equal to the value expected for two balls of radius
434 Å in close contact. The good agreement between the model
and the data gives us some confidence that the basic features
of the model are correct. On the other hand, there is an
inconsistency between the fittedΦV of 0.28 (obtained from the
fitted depth of the well) and the value of 0.17 calculated from
the known density and weight fraction of the sample. As
discussed above, it is likely that our empirical model is
compensating for features of the trueg(r) that were not
incorporated in the model by adjusting the well depth. This
provides a cautionary indication that, although the nearest-
neighbor coordination peak almost certainly exists, and is of
the same order of magnitude as the value we calculate, the “true”
value may differ by∼30%.

By contrast, substantial evolution was seen in samples which
were freshly prepared immediately before the SAXS measure-
ment. Figure 7 shows the beginning, intermediate, and end points
of measurements on a freshly prepared 31.7 wt % sample in
the presence of 0.050 M MgCl2. These fits were marginally
improved by the addition of a second, very broad Gaussian peak.
The most dramatic change in the raw data (Figure 7a) is the
change in slope at lowq, and its most dramatic manifestation
in real space is seen in the change in peak height and sharpness
of the nearest-neighbor contact peak (Figure 7b).

This trend is summarized in Figure 8, which shows the
parameters arising from the least-squares fits. (For these fits
the ball radius was fixed atRb ) 434 Å, the ball radius
dispersion was fixed atσb ) 13 Å, the volume density was
fixed at ΦV ) 0.283 , the radius of the second Gaussian peak
was fixed atr2 ) 1125 Å, and the width of the second Gaussian
peak was fixed atσ2 ) 450 Å.) The nearest-neighbor coordina-
tion (Figure 8a) can be represented in two ways. The parameter
c1 (solid circles), representing the integrated intensity under the
first Gaussian peak in the model, increases slightly after about
100 min, but the increase is comparable to the error bars. A
somewhat better measure of the first-shell coordination is
provided by a numerical integral of the total (empirical)g(r):

wherermin is the position of the first minimum ing(r). As shown
by the triangles in Figure 8a,I1 actuallydecreasesafter 30-60
min. This decrease is accompanied by a decrease in the mean
radius of the first coordination shell (Figure 8b) and the width
of the first shell (Figure 8c).

These changes all correspond to the development of a much
better-ordered structure on the 1500 Å length scale. At short
times, a disordered local structure leads to a poorly defined
coordination shell. As the order increases, particles either “fall
into” the first shell or are pushed out to larger distances, resulting
in a sharper coordination shell with a slightly smaller total
number of particles. We will associate the 60-120 min time
period over which this takes place with the “induction” period
observed in our rheology measurements, as discussed in section
6.

Similar effects were seen in a more concentrated sample.
Figure 9 shows the SAXS intensity, fit, andg(r) obtained from
a 53.7 wt % SiO2 sample in the presence of 0.020 M MgCl2.
The SAXS pattern changes subtly but noticeably at lowq,
corresponding to a sharpening ofg(r) with increasing time.
These data were well described by the same form factor used
in analyzing the 31.7% data: a depletion well, a narrow peak
of width 80-100 Å, and a broad peak of widthσ2 ≈ 760 Å
centered aroundr2 ≈ 1400 Å. The volume density obtained
from the fits wasΦV ) 0.496, to be compared with the value
of 0.345 obtained from the sample preparation parameters.
Figure 10 shows the positions of the first maximum ing(r),
first minimum ing(r), and coordination numberI1 as a function
of time after mixing with salt. The shell sharpens and moves to
somewhat smaller radius, with a modest decrease in coordination
number, over the first 20 min. At longer times no significant
changes were observed.

By contrast, SAXS patterns of “resheared” samples, in which
the solution was prepared several days in advance of the
experiment and then sheared37 immediately before the SAXS
measurement, all had a qualitative resemblance to the long-
time pattern in Figure 7 and the resheared pattern shown in
Figure 6. No change was ever observed in the SAXS patterns
of resheared samples, on time scales from 2 min to 24 h.
Evidently, the local structure (on a length scale of 0f 1500
Å) is unaffected by the shear due to injection through a
hypodermic needle. Presumably, reshearing the sample breaks
apart clusters but does not greatly affect the short-range order,
so there is no induction stage in the rheology (see section 6)
and the SAXS pattern is time-independent.

An unexpected outcome of our analysis was the observation
that the SAXS intensity at quite low angles was still described
by a model incorporating correlations up to only 1500 Å. It is

Figure 7. (a) SAXS intensity and model for a 31.7 wt % SiO2 sample
in the presence of 0.050 M MgCl2, at indicated times after mixing. For
clarity, only every tenth data point is shown, and scans are offset along
the intensity axis. (b) The real space models used in analyzing the data
shown in (a).

I1 ) ∫0

rmin 4πr2〈n〉g(r) dr (14)
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common to assert38-40 that there are three important regimes in
a SAXS pattern. In the Guinier regime, whenq < 1/ê (where
ê is the correlation length of the clusters), the scattering should
be only weakly dependent onq, due to the density homogeneity
on sufficiently large length scales. The fractal regime7,9,34,38-41

with 1/ê < q < 1/Rb arises from the self-similarity of colloidal
clusters, as reflected in a power-law dependence ofS(q) on q.
In the Porod regime, withq > 1/Rb, the scattering originates
from the surface of particles, i.e., is completely dominated by
the size and shape of the individual particles. However, as
previously observed,34,41 the intermediate regime whereqRb ∼
1 can also be important, and it is essential to separate the
different length scales. The low-angle regimes of Figure 7a and
Figure 9a appear to have powerlaw behavior, but in fact are
well-described by a local model incorporating nearest-neighbor
correlations only. This does not mean that there are no fractal
correlations on longer length scales, but it does imply that one
should use extreme care when interpreting low-angle power-
law behavior inI(q) as arising from fractal behavior.

Our results are similar to those of Hanley et al.,6-8 in that
we see a significant increase in the scattering at lowq as a
function of time after gellation is initiated. Since their particles
were much smaller than ours (70 Å instead of 440 Å), they
were able to probe larger distancesr compared to the ball radius
Rb, but were less sensitive to the near-neighbor correlations.

6. Dynamic Rheology Results

Small-amplitude oscillatory shear rheometry was used to
study the continuum properties of the colloid at various stages
in the flocculation process and during structural recovery
following steady shear of previously flocculated samples. A
range of silica and salt concentrations was investigated, includ-
ing conditions equivalent to the SAXS experiments. A more
extensive characterization was provided by rheological measure-
ments at higher concentrations, which resulted in higher moduli
and rates of flocculation.

Figure 11 shows the moduli during flocculation for samples
at 48.5 and 53.7 wt % silica, both containing 0.070 M MgCl2.
The rheological evolution of the 48.5 wt % samples shows three
distinct regimes: an initial “induction” period, a fast-growth
regime, and a final “quasi-stationary state” regime where the
modulus growth slows substantially. The growth rate ofG′ in
the fast-growth regime is 18 dyn/(cm2‚s), slowing to less than
1 dyn/(cm2‚s) in the quasi-stationary state regime. As expected,
the sample at higher particle concentration possesses a signifi-
cantly higher growth rate in the fast-growth regime (270 vs 18
dyn/(cm2‚s)), as well as a shorter induction period (which can
be seen clearly in the inset on Figure 11).

At high silica concentrations the rheology measurements were
limited by the compliance of the instrument. Figure 12 compares

Figure 8. Fitted parameters from time-series data for a 31.7 wt % SiO2 sample in the presence of 0.050 M MgCl2. In all cases, error bars were
obtained by systematically varying parameters and estimating the region over which acceptable fits were obtained. (a) First shell coordination
number. Solid circles and error bars show the fitting parameterc1, corresponding to the integrated intensity under the first Gaussian peak, while
open triangles show the numerically integrated coordinationI1 (eq 14). (b) Center position of first coordination shell. Solid circles and error bars
show the fitting parameterR1, corresponding to the center of the first Gaussian peak, while open triangles show the position of the first maximum
in g(r). This may differ fromR1 due to overlap with the edge of the “depletion well.” (c) Widthσ1 of the first Gaussian peak, with error bars. (d)
Position of the first maximum ing(r) (solid circles) and first minimum ing(r) (open circles).
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the early-time behavior of samples of 53.7 wt % silica at
MgCl2 concentrations of 0.05 M and 0.07 M. Again, the
expected behavior is observed, with the sample containing the
higher salt concentration exhibiting a higher rate in the fast-
growth regime (270 vs 85 dyn/(cm2‚s) and a shorter induction
phase.

If a gelled sample was sheared and the structure allowed to
re-form, it is not obvious that the same kinetics and ultimate
structure should be observed as for the case of de novo
flocculation. To investigate this issue, the 53.7 wt % silica/
0.070 M MgCl2 sample which was used to produce the data
shown in Figure 13 was sheared and the gel formation was
subsequently monitored in the same way as for the de novo
case. The sample was sheared sequentially for 60 s at 0.05 s-1

and then for 60 s at 0.1 s-1 immediately prior to the initiation
of the oscillatory shear experiment. This sequential shearing
was necessary to prevent damage to the rheometer transducer
that could result from instantaneous application of a high steady
shear rate to a gelled sample with high modulus. Approximately
100 min elapsed between the start of the de novo flocculation
and the start of oscillatory shear experiment after steady shear
(including the time to shear the sample). This figure shows that
the growth of the network after shear is substantially faster than
the growth due to initiation of flocculation (270 dyn/(cm2‚s)
after initiation of flocculation vs 560 dyn/(cm2‚s) after shear).
In addition, the resheared sample does not show the induction
period characteristic of the de novo flocculation.

The growth of G′ at late stages is nearly identical with that
from the sample during de-novo flocculation. For instance, if

Figure 9. (a) SAXS data (circles) and model for a 53.7 wt % SiO2

sample in the presence of 0.020 M MgCl2, at indicated times after
mixing. For clarity, only every tenth data point is shown, and scans
are offset along the intensity axis. (b) The real space models used in
analyzing the data shown in (a).

Figure 10. Numerically extracted parameters from time-series data
for a 53.7 wt % SiO2 sample in the presence of 0.020 M MgCl2. (a)
Position of the first maximum ing(r) (solid circles) and first minimum
in g(r) (open circles). (b) Numerically integrated coordination number
I1 (eq 14).

Figure 11. Storage modulus (triangles) and loss modulus (circles)
recorded at a frequency of 10 rad/s for 48.5 wt % (filled symbols) and
53.7 wt % (open symbols) SiO2 samples in the presence of 0.07 M
MgCl2, as a function of time after mixing the particles with MgCl2

solution. Inset: scale expansion of the early time region.
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the last 300 s of the reshear data are approximated by a straight
line fit, the slope is approximately 120 dyn/(cm2‚s). Although
the data for the de novo flocculation were collected for longer
times, we can use for comparison the portion of the reshear
data encompassing the 300 s period starting at the point where
the modulus is approximately 7.1× 105 dyn/cm2, similar to
the starting point modulus for the fit applied to the de novo
data; this slope is also found to be approximately 120 dyn/(cm2‚
s). Another way to evaluate the similarity at long times of these
data sets is to shift the reshear data along the time axis by an
amount that produces coincidence of the long-time regime of
both data sets (the shifted data are also shown in Figure 13).
This similarity at long times indicates that after the structure is
rebuilt to the point that existed before shearing, the structural
growth “picks up where it left off”. It furthermore suggests that
we attain the same type of structure after reshear that was
obtained originally during de novo flocculation.

The modulus growth behaviors for silica at 31.7 wt % in 0.05
M MgCl2 at 25 and 35°C are shown in Figure 14. These
experiments were performed by mixing the particles with
appropriate MgCl2 solution at 25°C and then transferring the

mixed sample to the rheometer which was equilibrated at the
desired temperature. The induction period for the sample at 25
°C is approximately 100 min, which, as mentioned earlier, is
similar to the time frame within which the SAXS measurements
indicate that the evolution of local structure is completed. This
observation suggests that the length of the induction period as
determined using the rheological data is related to the time
needed for the short-range structure to evolve.

The modulus growth rate at 35°C is greater than that at 25
°C (0.35 dyn/(cm2‚s) at 25°C vs 1.4 dyn/(cm2‚s) at 35°C)
because the increased Brownian motion at elevated temperature
leads to an increased rate of aggregation. Both sets of data in
Figure 14 exhibit the change in slope at long times, which is
indicative of the slowing down that occurred just prior to the
onset of the quasi-stationary state regime noted in Figure 11
for the 48.5 wt % sample.

The variation in kinetics governing modulus growth (initially
slow, fast at intermediate growth stages, slow again in the latter
stage of growth) raises the possibility that different mechanisms
may operate at early and late stages of the process. Certainly
the increase in dynamic moduli reflect the extent of particle
aggregation and/or connectivity of the flocculated network.
While we lack a reliable model to relate the rheology to specific
features of the structure or to the growth mechanism, the
activation energy for that mechanism may nevertheless be
estimated from the temperature dependence. It may be signifi-
cant that the initial induction period (prior to acceleration of
the modulus growth) conforms approximately to the period of
time required to establish a stable local structure according to
the SAXS measurements. Regardless of the details, we assume
that samples of identical composition flocculated at different
temperatures evolve through the same series of intermediate
structures with the same dynamic moduli. Accordingly, the
activation energy at each isostructural stage of the process may
be calculated from the relative rates, for example dG′/dt at each
value ofG′. Results of this analysis are shown in Figure 15. It
is apparent that at all stages of the process,G′ grows about 4
times faster at 35°C than at 25°C. This corresponds to an
activation energy of 105 kJ/mol, or 42kT at T ) 298 K. By
contrast, according to DLVO theory (Figure 3), the barrier for
coupling of an isolated pair should be no more than about 3
kT.

As mentioned earlier, all oscillatory shear experiments were
performed in the linear viscoelastic regime for the materials. It

Figure 12. Storage modulus recorded at a frequency of 10 rad/s for
53.7 wt % SiO2 samples in the presence of 0.07 M MgCl2 and 0.05 M
MgCl2 as a function of time after mixing the particles with MgCl2

solution.

Figure 13. Storage modulus recorded at a frequency of 10 rad/s for
53.7 wt % SiO2 samples in the presence of 0.07 M MgCl2 as a function
of time after mixing the particles with MgCl2 solution (curve labeled
de novo), and as a function of time after shearing the resultant gelled
sample as described in the text (curve labeled reshear). The data points
(small circles) are the result of shifting the reshear data by 1240 s along
the time axis to allow overlap with the long-time regime of the de
novo data.

Figure 14. Storage modulus recorded at a frequency of 1 rad/s for
31.7 wt % SiO2 samples in the presence of 0.05 M MgCl2 as a function
of time after mixing the particles with MgCl2 solution. Particles were
mixed at 25°C and then transferred to the rheometer for experiments
at 25 and 35°C.
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was important to keep the strain as small as possible for these
experiments because the onset of nonlinear viscoelastic behavior
was generally detected at strains much less than 1%, which is
usual for concentrated flocculated colloids. We were especially
careful to make sure that the strains chosen did not disrupt the
gel structure as it was forming, a situation which could lead to
a perturbation of the measured rate data. This possibility was
checked by changing the strain over the range of several tenths
of a percent during the time sweep, and confirming that a
decrease in the magnitude of the moduli did not occur when
the strain was increased. The data discussed in the above
paragraphs conformed to this test.

All samples exhibitedG′ > G′′ with little or no frequency
dependence throughout the flocculation process, characteristics
of a viscoelastic solid. The data cannot, however, exclude the
possibility of a terminal relaxation time much longer than the
longest oscillation period, e.g., 10 min. The increase inG′ during
flocculation reflects the extent of particle aggregation and/or
connectivity of the flocculated network. While we lack a reliable
model to relate the rheology to specific features of the structure
or to the growth mechanism, the activation energy for that
mechanism may nevertheless be estimated from the temperature
dependence.

To further characterize the quasi-stationary properties, we
examined the long-term stability of the gel volume. Samples
of gel were prepared atΦV ) 0.17 and 0.10, in 0.050 M MgCl2,
and then allowed to equilibrate with either pure water or excess
electrolyte solution at 25 and 50°C for a period of 48 h. No
swelling (or shrinkage) was detected in any of these experiments,
confirming that network formation is totally irreversible. Indeed,
no syneresis (gel shrinkage or exudation of electrolyte solution)
was observed even several months subsequent to the measure-
ments. This observation also demonstrates that the bulk
modulus42 of the gel network must be significantly larger than
the change in osmotic pressure.

7. Discussion

To recapitulate our SAXS and rheology results: for a fresh
sample, the first maximum ing(r) becomes sharper and moves
to smaller radius over an “induction” period of 60-90 min.
Over the same time period, little change is seen inG′ andG′′.
On time periods longer than 2 h, the SAXS patterns show little

or no change, while the shear moduli increase dramatically. After
a longer period on the order of tens of hours, the rate of change
for the dynamic moduli becomes progressively slower and can
be described as self-limiting. It remains uncertain whether this
process converges to any well-defined end point, but neverthe-
less for practical purposes it exhibits a reproducible stationary
state. If these samples are now resheared, their behavior in both
SAXS and rheology measurements reverts to that at theendof
the induction period. No evidence of syneresis was observed.

The pair distributiong(r) provides quantitative details of
particle aggregation and indirect insight into the pair potential.
However, any interpretation must make careful allowance for
the limits of experimental uncertainty and for complications due
to multiparticle correlations. Our SAXS data provide information
over a finite length scale, with the largest lengths (ê ≈ 1500-
2000 Å) determined by the smallest angles measured and the
shortest length scale (rmin ≈ 150-200 Å) determined by the
widest angles measured. As a consequence, our experimentally
derivedg(r) can neither prove nor exclude the possible existence
of a sharp peak due to contacting neighbors atr ) 2Rb ) 870
Å as predicted by the DLVO model (Figure 4a). (The 13 Å
variation inRb introduces a much smaller uncertainty.) For the
fully established gels atΦV ) 0.17 and 0.34 (Figure 7b at 14
h, Figure 9b at 9 h), the first peak ing(r) is centered close to
2Rb ) 870 Å and its width (σ1) is roughly half that of the
smallest measurable distance. From this we may conclude that
some of the neighbors bounded by this peak must be in contact
with the reference particle, and moreover, within experimental
uncertainty, it is possible that all are in contact. Since the total
population bounded by the peak (c1) exceeds 2, the results are
compatible with an extended network of primary contacts.

The presence of a strong peak ing(r) in the vicinity of 2Rb

does not in itself confirm the existence of a local minimum in
the pair potential at contact. However, the position and depth
of the first minimum do support this conclusion. Qualitatively
similar peaks occur in simple fluids with small or nonexistent
minima in the pair potential, due simply to the excluded volume
of the reference particle.43 In the those cases, propagation of
the excluded volume via multiparticle correlation produces a
minimum in g(r) at g 2x2Rb, corresponding tor g 1230 Å
for the particles in our experiments. The observation that the
minimum ing(r) for the flocculated gels occurs at much smaller
r (ca. 1000 Å) means that some factor beyond correlation effects
is responsible for excluding neighbors from this region of space,
such as a potential barrier. The presence of such a barrier is
also indicated by the fact that this minimum is deeper than in
simple liquids, even at much higherΦV. For example, in liquid
Ar the first maximum and minimum ing(r) are 3.05 and 0.56,
respectively,44 versus 2.5 and 0.35 for the gel in Figure 7b.

Our SAXS analyses of the flocculated gels do confirm, at
least qualitatively, two features of the DLVO pair potential,
namely a local minimum near contact and a potential barrier
just beyond contact. More extensive scattering data might permit
a more rigorous analysis, but the irreversible character of the
flocculation process (see below) will preclude solving the
statistical mechanics.

The properties of flocculated colloidal gels have generally
been measured under what were assumed to be stationary-state
conditions, but the true character of that state has not previously
been addressed. Our data show a progressive retardation of the
flocculation process, ultimately converging to quasi-stationary
conditions such that subsequent changes over days or even
longer might be regarded as negligible for most practical
purposes. We also found that the local structure and rheological

Figure 15. Effect of temperature on the growth rate for the storage
modulus G′. Equivalent values ofG′ are assumed to represent
isostructural states in the growth process, such that the relative rates
reflect the activation energy.
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properties stabilized within different time intervals. In gels
formed atΦV ) 0.17 in 0.050 M MgCl2 at 25 °C the SAXS
signal stabilized within a few hours whereas the dynamic moduli
continued to evolve for more than 2 days. In order to understand
either the evolving or stationary properties, it is essential to
identify intrinsic limitations on particle aggregation and network
growth, and especially to distinguish between thermodynamic
and mechanistic constraints. While the present study does not
resolve these issues, certain possibilities can be eliminated.

A significant feature of our experimental system is that the
gel volume conformed to the initial volume prior to flocculation
under all conditions. If the initial clusters grow with a fractional
dimensionalityD ) 2, similar to dilute flocs,1 then Φc, the
volume fraction encompassed by clusters, should initially
increase to fill the sample volume. Thus ifΦc grows asNc

3/2,
whereNc is the average number of particles per cluster, then
for a particle volume fractionΦV ) 0.17 the cluster size need
only grow toNc ) (0.17)-2/3 ) 3.26 in order forΦc to reach 1.
However, it is not obvious why the gel volume does not
subsequently shrink or collapse in response to the interparticle
adhesive forces. No evidence of syneresis was observed over a
period of more than 6 months in samples withΦV from 0.17 to
0.34.

Conservation of gel volume may be a consequence of some
mechanistic constraint on network growth, or the volume itself
may constitute a thermodynamic boundary condition. We
considered the possibility that flocculation might involve
reversible trapping of particle pairs in a relatively shallow
potential minimum, and that the stationary state might represent
a dynamic equilibrium with very slow formation and dissociation
of adhesive bonds. At equilibrium, contributions from excluded
volume and long-range repulsive interactions could result in a
positive second virial coefficient causing the gel to expand in
order to minimize osmotic pressure. However, as discussed
above, no swelling or shrinking of the gel was observed.

If the network is truly irreversible, then the sample should
exhibit robust viscoelastic solid behavior in the oscillatory shear
spectrum. Figure 16 shows the oscillatory shear moduli as a
function of frequency for the sample with 31.7 wt % silica in
0.05 M MgCl2. This spectrum was recorded shortly after the
completion of the time sweep (at 25°C) shown in Figure 14.
The storage modulusG′ is nearly invariant as a function of
frequency, and is nearly an order of magnitude larger thanG′′
over the entire frequency range studied, classic characteristics
of a viscoelastic solid. Furthermore, there is no indication of a

terminal relaxation regime (i.e., onset of viscoelastic liquid
behavior) even at frequencies as low as 10-2 rad/s, again
indicative of viscoelastic solid character. Although this behavior
does not prove irreversibility beyond time scales represented
by the lowest frequency used, these results provide further
support for the conclusion stated in the previous paragraph that
the network formation is essentially irreversible.

The evolution ing(r) (Figure 7b) shows that early in the
process the population of contacting neighbors (r ≈ 850 Å)
grows at the expense of the population just beyond contact (r
≈ 1000 Å), but little or no further change occurs after about
100 min. As already noted, flocculated clusters are expected to
impinge or overlap with one another at a very early stage in
their growth; consequently one might expect the gel point to
occur well within this period. (This is supported by the
observation thatG′ > G′′ throughout this period.) Yet the
continued increase ofG′ and G′′ over much longer times
indicates that the network continues to grow. Rheometry may
detect an increase in network connectivity whose effect on the
mean coordination number is negligible. For example, atΦV

) 0.17, each bond within a volume element 1µm3 would only
contribute 0.4% to the coordination number.

The modulus growth after reshear does not exhibit the
induction period characteristic of the de novo flocculation. This
suggests that upon shear the sample is not broken down to
individual particles, but rather only clusters of particles that then
reassemble upon cessation of shear. Furthermore, the rate of
storage modulus growth of the resheared sample becomes
similar to that of the de novo sample at late stages, suggesting
that the structure achieved upon regrowth of the network is the
same as that initially obtained upon addition of salt. This further
suggests that the long-range structure is essentially dictated by
the initial aggregation of primary particles to doublets, triplets,
etc.

Irreversible network growth may be limited by mechanical
forces. Once all particles are irreversibly bound to the network,
any further coupling requires deformation of the network. This
involves stretching and/or bending existing bonds for which the
average potential is manifest in the principal elastic moduli.
Since the bulk modulus is apparently large enough to suppress
volumetric strain, deformation must be confined to deviatoric
strain. The associated strain energy should be proportional to
the square of the network displacements and to the shear
modulusGe. For example, in the quasi-stationary regime, if we
equateGe with G′ ∼ 5 kPa, and assume that coupling requires
interparticle displacements of 100 Å, then the corresponding
strain energy is about 27kTat 298 K. This strain energy should
contribute to the activation energy for network growth, over
and above the barrier for coupling independent particles or
clusters. While the magnitude of elastic strain energy is clearly
large enough to account for much of the experimentally observed
activation energy (section 6), the fact that the latter remains
constant over a 50-fold growth inG′ suggests that this growth
is not directly responsible for suppressing network growth. A
more likely scenario might be that the magnitude ofG′ restricts
the coupling reactions to some fraction of potential coupling
partners within a suitably small range of separations. As the
reaction proceeds andG′ grows at the same time, this population
of thermally accessible reaction partners becomes vanishingly
small.
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Appendix: Formalism Used in the SAXS Data Analysis

In the Born approximation, the scattered X-ray intensity is
given by

whereF(rb) is the charge density, the〈 〉 brackets represent a
statistical average, andqb is the momentum transfer. (In the
remainder of the discussion the thermal averages will be
implicit.) For a collection ofN scattering objects at positionsrbi

embedded in a water medium of constant densityFw, we write

If we assume that all the particles are identical, we can then
write

The Fw term gives rise to aδ(qb) term, i.e., true forward
scattering, and can subsequently be ignored. The intensity can
be written as in eq 1:

Let us first consider the single-particle form factor,F(qb). We
will take our particles to be spherical balls of constant density.
Because of the spherical symmetry, only the magnitude ofqb is
relevant.

with the well-known result20

as in eq 5. HereF0 is thedifferencebetween the electron density
of the spherical ball and that of water. If we had objects that
were exactly electron-density-matched to water, we would have
no contrast and no scattering.

The above form factor applies for monodisperse spheres. A
real colloidal suspension is always composed of particles with

a range of sizes. This dispersion in particle size is also
manifested in a dispersion in interaction forces, and in principle
an average should be done over the entire Fourier transform of
charge density before doing the separation between|F(q)|2 and
S(q) in eqs 1 and 18. Indeed, for large polydispersity, failure to
do so can introduce substantial errors.45,46 However, we make
the assumption that the polydispersity can be treated by replacing
each particle by an average particle with smeared radius. That
is, we replace the squared form factor with a Gaussian average
over different radii:22-24,28-32

Calculations and measurements on other systems indicate that
this approach does not introduce substantial errors if the
polydispersity is small enough (σ e Rb/10).38,47 In analyzing
the data, it was necessary to numerically integrate the above
function. This can be efficiently done with the technique of
Hermite integration:

where the weightswi and positionsxi (which are the zeros
of Hermite polynomials) are tabulated.48 For our calcula-
tions we used eq 24 with 10-point Hermite integration, i.e.,n
) 10.

Let us now considerS(qb). We can writeS(qb) in the usual
way as

where〈n〉 is the average particle density andg(rb) is the two-
particle density-density function. This function has the proper-
ties

It is sometimes more convenient to rewrite

Since theδ(q) term is only manifested in the true forward
scattering, we can ignore it. Therefore we take

As discussed above, we performed least-squares fits to the
entire I(q) data set, allowing free variables in both|F(q)|2
and S(q). For S(q) we chose an empirical function forh(r)
which contained the appropriate physical constraints and
then calculatedS(q) using a combination of analytical and
numerical Fourier transforms.〈n〉h(r) was chosen to have the

I(qb) ) I0〈|∫d3r eiqb‚ rbF( rb)|2〉 (15)

F( rb) ) Fw + ∑
i)1

N

fi( rb - rbi) (16)

∫d3r eiqb‚ rbF( rb) )

∫d3r eiqb‚ rbFw + ∑
i

eiqb‚ rbi∫d3r eiqb‚ rbf( rb) (17)

I(qb) ) I0S(qb)|F(qb)|2 (18)

S(qb) ) |∑
i

eiqb‚ rbi|2 ) ∑
i

∑
j

eiqb‚( rbi- rbj) (19)

F(qb) ) ∫d3r eiqb‚ rbf( rb) (20)

f( rb) ) { F0 r e Rb

0 r < Rb
(21)

F(qb) )
4πRb

3F0

3
R(q,Rb) (22)

R(q,r) ≡ 3
sin(qr) - (qr) cos(qr)

(qr)3
(23)

|F(q)|2 f
1

σbx2π
∫dr e-(r-Rb)2/2σb

2|4πr3F0

3
R(q,r)|2 (24)

∫-∞

∞
e-x2

f(x) dx ≈ ∑
i)1

n

wif(xi) (25)

S(qb) ) 〈n〉(1 + 〈n〉 ∫ d3r eiqb‚ rbg( rb)) (26)

g( rb) ) {0 | rb| f 0
1 | rb| f ∞ (27)

g( rb) ) 1 + h( rb) h(r) ) {-1 r f 0
0 r f ∞ (28)

S(qb) ) 〈n〉(1 + 〈n〉 ∫ d3r eiqb‚ rb +

〈n〉 ∫ d3r eiqb‚ rbh( rb)) (29)

S(qb) ) 〈n〉(1 + 〈n〉δ(qb) + 〈n〉∫d3r eiqb‚ rbh( rb)) (30)

S(qb) ) 〈n〉(1 + 〈n〉∫d3r eiqb‚ rbh( rb)) (31)
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following form:

The first term represents the depletion region around a reference
sphere:21 two spheres of radiusRb can get no closer to each
other than 2Rb, so around the origin there should be a region of
total depletion (g(0) ) 0, h(0) ) -1). The form of the error
function that we used has the property

Thus, in eq 32,D should be numerically equal to the number
of scatterers per unit volume,〈n〉. We can relate this to the
volume fraction of spheres,ΦV. If ΦV is the fraction of the
total volume occupied by spheres, then we can write it as the
number of spheres per unit volume times the volume of each
sphere:

In practice, we choseΦV to be the fitting parameter, so we
took D ) 3ΦV/(4πRb

3).
The Fourier transform of this “spherical well” is the same

calculation we did for the spherical ball. That is, if

then

Using an error function rather than a well with sharp edges is
equivalent to using a Gaussian average over radii:

We use the same technique of Hermite integration, giving

AlthoughRw was an unconstrained variable in the fits, we would
expect it to be close to double an average sphere radius,Rw ≈
2Rb. In fact, it was generally slightly larger than 2Rb, reflecting
perhaps the existence of an additional electrostatic depletion
region. Furthermore, the width of the well edge should greater
than or equal to the self-convolution of the sphere polydispersity,
σw ≈ σx2, on the order of 15-30 Å.

The two Gaussian terms in〈n〉h(r) represent coordination
shells. The first one was typically located close toR1 ≈ 2Rb,
and represented close-contact coordination. The second was
located was at larger radius and broader, and accounted for a
tail in g(r). We can relate the total coordination in a shell to the

amplitude of the Gaussian by calculating the integral of the
volume within the spherical shell. Definingci to be the total
number of particles within the shell

We again use Hermite integration when calculating the Fourier
transform:

In addition to the “interesting” scattering due to the colloid,
there was a small amount of additional background, due to
scattering from the air, sample windows, solvent, and also
readout noise from the CCD detector. These were collectively
modeled by a function [(Bb(q))2 + C2]1/2, whereb(q) was a
polynomial inq and 1/q whose terms were obtained by least-
squares fits to SAXS data from a cell filled with water only,
andC was a constant. (The purpose of adding them in quadrature
was to ensure that the background function was always positive
definite.) Since the sample attenuation could not be calculated
precisely (it varied, for example, depending on exactly where
the sample was placed on the beam),B and C were uncon-
strained fitting parameters, but we verified that they converged
to “sensible” values.

Putting everything together, we arrive at the function given
in eq 7 for the scattered intensityI(q).
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